Large-scale user modeling with recurrent neural networks for music discovery on multiple time scales
نویسندگان
چکیده
منابع مشابه
Multiple Time Scales Recurrent Neural Network for Complex Action Acquisition
This paper presents preliminary results of complex action learning based on a multiple time-scales recurrent neural network (MTRNN) model embodied in the iCub humanoid robot. The model was implemented as part of Aquila cognitive robotics toolkit and accelerated through the compute unified device architecture (CUDA) making use of massively parallel GPU (graphics processing unit) devices that sig...
متن کاملLarge Scale Discovery of Seasonal Music From User Data
The consumption history of online media content such as music and video offers a rich source of data from which to mine information. Trends in this data are of particular interest because they reflect user preferences as well as associated temporal contexts that can be exploited in systems such as recommendation or search. This paper classifies songs associated with a holiday temporal context u...
متن کاملDecentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks
In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...
متن کاملLarge-Scale Text Classification with Recurrent Neural Networks
요 약 문서 분류 문제는 오랜 기간 동안 자연어 처리 분야에서 연구되어 왔다. 우리는 기존 컨볼루션 신경망을 이용했던 연구에서 더 나아가, 순환 신경망에 기반을 둔 문서 분류를 수행하였다. 순환 신경망에서는 가장 성능이 좋다고 알려져 있는 장기-단기 기억 (Long-Short Term Memory; LSTM) 신경망과 회로형 순환 유 닛(Gated Recurrent Units; GRU)을 활용하였다. 실험 결과, 분류 정확도는 Multinomial Naive Bayesian Classifier, SVM, LSTM, CNN, GRU의 순서로 나타났다. 따라서 텍스트 문서 분류 문제는 시퀀스를 고려하 는 것 보다는 문서의 feature를 뽑아 분류하는 문제에 가깝다는 것을 추측할 수 있었다. 그리고 GRU...
متن کاملAlmost Periodic Solution for a Lotka-Volterra Recurrent Neural Networks with Harvesting Terms on Time Scales
By using the theory of exponential dichotomy and Banach fixed point theorem, this paper is concerned with the problem of the existence and uniqueness of almost periodic solution in a harvesting Lotka-Volterra recurrent neural networks on time scales. To a certain extent, our work in this paper corrects the defect in [Y.G. Liu, B.B. Liu, S.H. Ling, The almost periodic solution of Lotka-Volterra ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Multimedia Tools and Applications
سال: 2017
ISSN: 1380-7501,1573-7721
DOI: 10.1007/s11042-017-5121-z